Cell traction forces direct fibronectin matrix assembly.
نویسندگان
چکیده
Interactions between cells and the surrounding matrix are critical to the development and engineering of tissues. We have investigated the role of cell-derived traction forces in the assembly of extracellular matrix using what we believe is a novel assay that allows for simultaneous measurement of traction forces and fibronectin fibril growth at discrete cell-matrix attachment sites. NIH3T3 cells were plated onto arrays of deformable cantilever posts for 2-24 h. Data indicate that developing fibril orientation is guided by the direction of the traction force applied to that fibril. In addition, cells initially establish a spatial distribution of traction forces that is largest at the cell edge and decreases toward the cell center. This distribution progressively shifts from a predominantly peripheral pattern to a more uniform pattern as compressive strain at the cell perimeter decreases with time. The impact of these changes on fibrillogenesis was tested by treating cells with blebbistatin or calyculin A to tonically block or augment, respectively, myosin II activity. Both treatments blocked the inward translation of traction forces, the dissipation of compressive strain, and fibronectin fibrillogenesis over time. These data indicate that dynamic spatial and temporal changes in traction force and local strain may contribute to successful matrix assembly.
منابع مشابه
Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix
Despite the crucial role of extracellular matrix (ECM) in directing cell fate in healthy and diseased tissues--particularly in development, wound healing, tissue regeneration and cancer--the mechanisms that direct the assembly and regulate hierarchical architectures of ECM are poorly understood. Collagen I matrix assembly in vivo requires active fibronectin (Fn) fibrillogenesis by cells. Here w...
متن کاملFibronectin Unfolding Revisited: Modeling Cell Traction-Mediated Unfolding of the Tenth Type-III Repeat
Fibronectin polymerization is essential for the development and repair of the extracellular matrix. Consequently, deciphering the mechanism of fibronectin fibril formation is of immense interest. Fibronectin fibrillogenesis is driven by cell-traction forces that mechanically unfold particular modules within fibronectin. Previously, mechanical unfolding of fibronectin has been modeled by applyin...
متن کاملThe integrin expression profile modulates orientation and dynamics of force transmission at cell-matrix adhesions.
Integrin adhesion receptors connect the extracellular matrix (ECM) to the cytoskeleton and serve as bidirectional mechanotransducers. During development, angiogenesis, wound healing and cancer progression, the relative abundance of fibronectin receptors, including integrins α5β1 and αvβ3, changes, thus altering the integrin composition of cell-matrix adhesions. Here, we show that enhanced αvβ3 ...
متن کاملTraction forces mediated by integrin signaling are necessary for definitive endoderm specification.
Pluripotent embryonic stem cells (ESCs) exert low-traction forces on their niche in vitro whereas specification to definitive endoderm in vivo coincides with force-mediated motility, suggesting a differentiation-mediated switch. However, the onset of contractility and extent to which force-mediated integrin signaling regulates fate choices is not understood. To address the requirement of tracti...
متن کاملاهمیت فیبرونکتین در تکوین، ترمیم و درمان: مقاله مروری
Fibronectin (FN) is one of the essential component of the extra cellular matrix and their important role is as regulator of cellular activities and also fibronectin is an important scaffold for maintaining tissue. Fibronectin conformational changes expose additional binding sites that participate in fibril formation and in conversion of fibrils into a stabilized, insoluble form. In fact fibrone...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 96 2 شماره
صفحات -
تاریخ انتشار 2009